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1 INTRODUCTION 

The Integrated project “Po Regions Engaged to Policies of Air” LIFE-IP PREPAIR supports the 

implementation of regional air quality plans (AQPs) and of Po Valley agreements on a larger scale, 

acting in a synergic way, so to strengthen the sustainability and durability of the results. Although the 

most critical area studied in the project is the Po Valley, the field of study is extended to Slovenia in 

order to assess and reduce transboundary pollutants transport. Regarding air quality, in fact, all the 

Regions located south of the Alps face the same adverse climatic conditions, which require higher 

technical and financial efforts to settle compliance problems, in comparison with other Regions. The Po 

Valley, a densely populated and heavily industrialized area, represents a non-attaining zone for PM 

(Particulate Matter), NO2 (Nitrogen Dioxide) and O3 (Ozone). Previous experience demonstrates that 

coordinated and large-scale actions are necessary in this area. A comprehensive policy, acting on a 

large scale and on several sources of pollutant precursors of PM and O3, is essential to further reduce 

pollution levels. For this purpose, all the Regions have clustered in the so-called Po Basin Board and 

planned actions with the aim of further reducing the emission of pollutants and their precursors.  

This first assessment report of action D5 provides a synthetic view on the state of air quality in the Po 

Valley and Slovenia for year 2020 and examines PM10, PM2.5, nitrogen dioxide and ozone, which are 

the pollutants whose concentration values more frequently exceed legislation thresholds. However this 

report is not intended to be a formal air quality assessment which is responsibility of the regional 

authorities. The assessment was carried out with data fusion techniques using model output and 

monitoring data collected by action C1 of the PREPAIR project. Even though four CTM and data 

fusion modelling systems with different setup (resolution, boundary condition, meteorological data and 

data fusion technique) have been used, the model outputs are very similar to each other. In this report 

the assessment methodology, the data fusion technique and results of the most critical indicators 

compared to the limit values established by the 2008/50/EC Directive are shown.  
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2 ASSESSMENT METHODOLOGY 

The assessment of air quality status in Po Valley and Slovenia for year 2020 was carried out with an 

integrated approach that exploits two different types of information:  

• the air quality monitoring network data, accurate but available only in a limited number of 

locations; 

• high spatial resolution concentration fields produced by means of a chemical transport model 

(CTM). 

Currently, within the PREPAIR project, several CTM modelling systems running operational and air 

quality data are shared daily by all partners through action C1. Then, concentration fields and air 

quality monitoring data have been integrated using different data fusion techniques, one for each 

modelling system. 

The assessment has been carried out taking into account the most critical indicators compared to the 

limit values established by the 2008/50/EC Directive: 

• PM10 annual mean concentration values (the limit value set by EU legislation is 40 μg/m
3
); 

• PM2.5 annual mean concentration values (the limit value set by EU legislation is 25 μg/m
3 

for stage 

I and 20 μg/m
3 

for stage II); 

• NO2 (nitrogen dioxide) annual mean concentration values (the limit value set by EU legislation is 

40 μg/m
3
); 

• 90.4 percentile of PM10 daily mean concentration values corresponding to the 36th highest daily 

mean of the year (the limit value set by EU legislation is 50 μg/m
3
); 

• 93.1 percentile of O3 (ozone) maximum daily 8-hour average concentration values corresponding to 

the 26th highest daily maximum of the running 8-h mean of the year (thetarget value set by EU 

legislation is 120 μg/m
3
) 

In the following paragraphs, input data (air quality measurements and CTM models) have been first 

briefly described (paragraph 2.1), then the data fusion techniques (paragraph 2.2) and the results of the 

validation task (paragraph 2.3) are presented. 

 



 

 3

 

 

2.1 DATA FUSION INPUT DATA 
2.1.1 AIR QUALITY DATA 

The observational database used in data fusion procedures was built from the dataset implemented in 

action C1 by the support of all the partner. This dataset collects pollutant concentrations measured by 

monitoring stations managed by PREPAIR project partners, which are divided into urban, sub-urban 

and rural categories (zone type classification). Moreover, some stations represent the background level 

(B) whereas some others represent the industrial (I) or traffic (T) level (station type classification). 

Table 1 summarizes the main stations classification, while Figure 1 shows the spatial distributions of 

monitoring stations 

.  

Figure 1 - Spatial distribution of monitoring stations availables in C1 dataset. 
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The C1 dataset contains hourly measurements of nitrogen dioxide (NO2), and ozone (O3), hourly and 

daily measurements of particulate matter PM10 and PM2.5 (see Table 1). The data were aggregated to 

obtain the air quality indicators (annual mean and percentiles ) used in the assessment. 

The data, with different levels of validation depending on data supplier, have been subjected to a 

quality check before their use (range control, outlier detection, data entry error etc.) 

Region Rural Sub-urban Urban Total Pollutant 

 B I T Tot B I T Tot B I T Tot  NO2 O3 PM10 PM25 

Emilia-Romagna 14 - - 14 9 - - 9 12 - 12 24 47 44 32 44 25 

Friuli-Venezia-Giulia 6 2 - 8 8 3 1 12 6 - 4 10 30 23 20 28 8 

Lombardia 10 2 - 12 16 2 1 19 27 3 24 54 85 84 51 64 32 

Piemonte 5 - - 5 9 1 1 11 10 - 12 22 38 37 20 34 21 

Trentino 2 - 1 3 2 - - 2 2 - 1 3 8 8 6 8 3 

Valle d’Aosta 2 - - 2 - - - - 2 - - 2 4 4 4 3 2 

Veneto 7 - - 7 1 3 - 4 14 2 -6 22 33 32 24 26 9 

Slovenia 3 - - 3 2 - - 2 5 - 2 7 12 9 10 9 --- 

Total 49 4 1 54 47 9 3 59 78 5 61 144 257 241 167 216 100 

Table 1 - C1 dataset: monitoring stations grouped according to data supplier (rows), station type classification, zone type classification 

and measured pollutant (columns). 

Among all the stations included in the C1 dataset, the database used in data fusion procedures has 

been chosen based on the following criteria: 

• station type: background stations (urban, suburban or rural) have been chosen; this choice is 

consistent with the resolution of the modelling systems described in paragraph 2.1.2; 

• data capture percentage: stations with data capture percentage not less than 75% have been 

selected. This value allows to have enough stations in all regions of the domain, as shown in the 

Figure 2; 

• location of monitoring station: for each pollutant, a dataset with homogeneous distribution and 

sufficient spatial coverage to capture the complexity of different territorial contexts has been 

built; if multiple stations fall in the same cell of computational domain, the station with the 
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highest data capture percentage has been chosen (indeed this leads to different datasets for each 

different modelling system described in paragraph 2.1.2). 

 

Figure 2 - C1 dataset: data capture percentage for each pollutant and for each data supplier. 

Finally, an exploratory analysis on the measured data in 2020 was carried out, with the aim of checking 

and validating the assessment results obtained by means of data fusion procedures (see paragraph 3). 

The results of this exploratory analysis are presented in Appendix A. 

2.1.1.1 CTM MODELS 

Among all the CTM running operational within the PREPAIR project, four modelling systems have 

been used for the assessment: NINFA (Arpae Emilia-Romagna), FARM-PI (ARPA Piemonte), FARM-

LO (ARPA Lombardia), CAMx-SLO (ARSO). 

2.1.1.2 Emission data from CTM model 

In the PREPAIR Project several activities have been performed for the development of emission 

datasets also with the aim to support the elaboration of CTM model simulations: 

• the emission dataset developed in the Action A1 (dataset of emissions) estimated on reference year 

2013 for the overall regions and countries in the model basin domain (figure 3 on the left) 

• update on emissions estimates for year 2017 (with a municipal detail) implemented in Action D2 

(Figure 3 on the right) 



 

 

Figure 3 -. Emission maps for 2013 and 2017 representing PM10 (top) and N0x (bottom).

2.1.1.3 Arpae Emilia-Romagna Model (NINFA)

NINFA (Northern Italy Network to Forecast Aerosol pollution) is the operational AQ model of the 

Environmental Agency of the Emilia

Transport Model, a meteorological model and an emissions pre

model is CHIMERE, (http://www.lmd.polytechnique.fr/chimere/

which simulates transport, dispersion, chemical transformations and deposition (dry and wet) of air 

pollutants and aerosols. Starting from the emission data for the Po Va

regions/countries present in the model domain,(

content/uploads/2017/06/Emissions

model by using specific proxy variables for each emission activity SNAP3 (i.e. road network for traffic 

emission, population and urban fabric for domestic heating, and so on). The meteorological hourl

input is provided by COSMO, the National NWP model used by the National Civil Protection 

Department. COSMO is a non-hydrostatic, limited

primitive thermo-hydrodynamical equations describing compressible flo

a variety of physical processes taken into account by dry and moist parameterization schemes.The 
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time-dependent boundary conditions (with hourly frequency) in PREPAIR project are provided by 

CAMS service (https://doi.org/10.3390/atmos11050447

The AQF (Air Quality Forecast) modelling system performs simulations over four nested domains

• a Europe background domain covering with an horizontal resolution of 20 km (MEDL);

• a national background domain covering the whole Italian Peninsula with an horizontal resolution of 

7 km (ITA7); 

• an inner domain nested to ITA7 with 5 km horizontal resolution, including Northern Italy and 

Slovenia (PREPSLO). This domain is considered for t

• a inner domain nested to ITA7 (EMR3), with 3 km horizontal resolution, centered over Emilia

Romagna region (EMR3) ; 

 

 

Figure 4 - NINFA model scheme 
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Domain MEDL ITA7 PREPSLO  EMR3 

Bounding  

 Box 

Lon: -24.8 - 33.49  

Lat : 27.04 - 54.99 

Lon: 4.36 - 19.93 

Lat : 35.2  - 48.88 

Lon: 6.25 - 16.75  

Lat : 43.1 - 47.35 

xUTM : 482.4 - 821.4 

yUTM: 4824.5- 5079.5 

Vertical  

Resolution 

9 level  

up to 500 hPa 

9 level  

up to 500 hPa 

9 level  

up to 500 hPa 

15 level 

 up to 500 hPa 

Horizontal  

Resolution 

0.18 * 0.17 degree 

 

0.09 * 0.06 degree 0..07 * 0.05 degree 3 * 3 km 

CTM Model CHIMERE2017 CHIMERE2017 CHIMERE2017 CHIMERE2017 

BC CAMS 

 

SNPA CAMS  

 downstream  

service (MEDL) 

SNPA CAMS 

 downstream  

service (ITA7) 

SNPA CAMS 

downstream 

 service (ITA7) 

METEO 

 Model 

COSMO5I COSMO5I COSMO5I COSMO5I/COSMO2I 

EMISSION TNO-MACC III ISPRA, 

TNO-MACCIII 

Prepair, ISPRA 

TNO-MACCIII 

Prepair,ISPRA 

TNO-MACCIII 

OUTPUT Hindcast, 

+72houres 

 forecast 

Hindcast, 

+72houres  

Forecast 

Hindcast, 

+72houres 

forecast 

Hindcast,+72houres  

Forecast 

Table 2 - Main configurations of NINFA modelling system. 

2.1.1.4 ARPA Piemonte Model (FARM-PI) 

The FARM-PI (Giorcelli et al, 2013) model is the operational AQF model of the Environmental 

Agency of the Piemonte Region (ARPA Piemonte). The forecasting system has been built by using 

state-of-the-art techniques for atmospheric transport and dispersion modelling. The computational 

system architecture (Figure 6) is modular, so that the model inter-dependence is limited, in order to 

facilitate system improvements without modifying the general structure.  



 

 

Figure 

The core of the system is represented by the air quality model FARM (Flexible Air Quality Model, 

Gariazzo et al, 2007; Silibello et al, 2008), a three

transport, chemical conversion and deposition of atmospheric pollutants. The forecasting system needs 

a series of detailed input datasets: emission inventories, geographic and physiographic data (to describe 

topography, surface land cover and urban details), large scale

Some specific modules are needed to process these data in order to produce emissions, meteorological 

fields and boundary conditions necessary as input to the air quality model. Emission data (point, line 

and area sources) coming from different resolution inventories available over all computational 

domains are processed by a specific emission module in order to produce gridded hourly emission rates 

for all the chemical species considered by the air quality model. T

non-methanic hydrocarbon speciation and flexible space and time disaggregation, according to 

cartographic thematic layers and specific time modulation profiles (yearly, weekly and daily). The 

meteorological fields are provided by 00 UTC runs of COSMO, the National NWP model used by the 

National Civil Protection Department. The COSMO model levels fields are directly interpolated and 

adjusted (forced to be non-divergent) over all the computational domains by an interface modul

Starting from topography and land

meteorological variables provided by COSMO, a diagnostic model computes three

of horizontal and vertical diffusivity and two

of chemical species. The initial and boundary conditions for the background domain are obtained by 

continental scale air quality forecasts provided by PrevAir European Scale Air Quality Service 
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Figure 6 -. FARM-PI computational system architecture 

The core of the system is represented by the air quality model FARM (Flexible Air Quality Model, 
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sources) coming from different resolution inventories available over all computational 

domains are processed by a specific emission module in order to produce gridded hourly emission rates 

for all the chemical species considered by the air quality model. This pre-processing system allows 

methanic hydrocarbon speciation and flexible space and time disaggregation, according to 

cartographic thematic layers and specific time modulation profiles (yearly, weekly and daily). The 

ded by 00 UTC runs of COSMO, the National NWP model used by the 

National Civil Protection Department. The COSMO model levels fields are directly interpolated and 

divergent) over all the computational domains by an interface modul

Starting from topography and land-use data managed by the modelling system and gridded fields of 

meteorological variables provided by COSMO, a diagnostic model computes three

of horizontal and vertical diffusivity and two-dimensional fields of deposition velocities for a given set 

of chemical species. The initial and boundary conditions for the background domain are obtained by 

continental scale air quality forecasts provided by PrevAir European Scale Air Quality Service 
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(http://www.prevair.org). The AQF modelling system performs simulations over the following three 

nested domains (two-way nesting), as shown in Figure 7:

• a background domain (g1, blue line), covering Po valley basin and the Alps, with an horizontal 

resolution of 8 km; 

• a regional target domain (g2, black line), covering the whole Piemonte Region with an horizontal 

resolution of 4 km; 

• a inner domain (g3, red lines), with 1 km horizontal resolution, centered over Torino metropolitan 

area; 

. 

This multi-scale approach allows to take into account the effect of sources located outside the target 

areas, and to better describe phenomena characterized by large spatial scales, such as photochemical 

smog and particulate matter accumulation processes. The forecasting system runs on a daily basis in 

order to produce air quality forecasts for the current day and the two days after, with one hour time 

resolution. 
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The AQF modelling system performs simulations over the following three 

way nesting), as shown in Figure 7: 

a background domain (g1, blue line), covering Po valley basin and the Alps, with an horizontal 

egional target domain (g2, black line), covering the whole Piemonte Region with an horizontal 

a inner domain (g3, red lines), with 1 km horizontal resolution, centered over Torino metropolitan 

. Figure 7 - FARM-PI computational domains. 
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te matter accumulation processes. The forecasting system runs on a daily basis in 

order to produce air quality forecasts for the current day and the two days after, with one hour time 
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a background domain (g1, blue line), covering Po valley basin and the Alps, with an horizontal 

egional target domain (g2, black line), covering the whole Piemonte Region with an horizontal 

a inner domain (g3, red lines), with 1 km horizontal resolution, centered over Torino metropolitan 

 

scale approach allows to take into account the effect of sources located outside the target 

areas, and to better describe phenomena characterized by large spatial scales, such as photochemical 

te matter accumulation processes. The forecasting system runs on a daily basis in 

order to produce air quality forecasts for the current day and the two days after, with one hour time 
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 g1 g2 g3 

Domain Lon: 191000-911000 

Lat: 4765000-5349000 

Lon: 309000-529000 

Lat: 4875000-5159000 

Lon: 367500-418500 

Lat:4961500-5012500 

Vertical Resolution 16 level up to 7500 a.g.l 16 level up to 7500 a.g.l 16 level up to 7500 a.g.l 

Horizontal resolution 8km x 8km 4km x 4km 1km x 1km 

CTM model FARM v4.13 FARM v4.13 FARM v4.13 

BC PrevAir services Two-way nesting with g1 grid One-way nesting with g2 

grid 

Meteo model COSMO-I5 COSMO-I5 COSMO-I5 

Emission data Prepair, IREA,ISPRA, 

EMEP 

Prepair, IREA,ISPRA,EMEP IREA (Piemonte regional 

inventory) 

Output +72 hours forecast, air 

quality indicators, air quality 

maps 

+72 hours forecast, air quality 

indicators, air quality maps 

+72 hours forecast, air 

quality indicators, air quality 

maps, air quality index 

Table 3 - Main configurations of FARM-PI modelling system. 

2.1.1.5 ARPA Lombardia Model (FARM-LO/ARPA-LO) 

The air modelling system of ARPA Lombardia is based on ARIA Regional developed by AriaNETsrl. 

There are two different domain extension: one for Regione Lombardia (in Figure 8represented by red 

line named g3) and one for the PREPAIR project (in Figure 8 represented by blue line named g2) 

which includes the Po basin extended from western (Piemonte and Valle d’Aosta Regions) to eastern 

part (Slovenia) and from northern (Trento Province and Friuli Venezia Giulia Regions) to southern 

(Emilia-Romagna Region). The PREPAIR model domain consists of 210 rows x 105 columns with a 

cell resolution of 4 km and is vertically discretized into 16 different levels till 4960 m a.s.l.. The main 

workflow of modelling architecture is composed by (Figure 9): 

• WRF suite: the forecasts produced by the deterministic model in a global scale GFS (National 

Center for Environmental Predictions NCEP) are used as BC (free distributed by National Oceanic 

and Atmospheric Administration, NOAA;https://www.ncdc.noaa.gov/data-access/model-

data/model-datasets/global-forcast-system-gfs) 
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• SURFPro suite: estimation of micrometeorological fields linked to atmospheric turbulence (i.e., 

mixing height, atmospheric stability classes, vertical and horizontal diffusivity), dry deposition 

velocity for several chemical species and natural emissions (from vegetation to winds action). 

• EMMA: spatial (i.e., gridding on domain cells) and temporal (i.e., hourly) attribution of the 

inventory emission data (INEMAR). Furthermore, COV and particulate matter speciation are 

considered into FARM. Mainly, in order to use the database developed by Action D2, an 

harmonization procedure of the tables which associate SNAP codes for each inventory to spatial 

proxy and to contaminants speciation have applied.  

• IC/BC: initial condition for chemical species concentration in the model domain and at the 

beginning of simulation and boundary condition representing the chemical concentration in the 

border of the domain time-independent during all the simulation process (provided by 

QualeAria:http://www.qualearia.it)).  

• FARM: WRF, IC/BC and Emission Inventories are the input for the 3D chemical transport model 

(CTM) which is a multi-grid Eulerian model for dispersion (wet and dry), transformation and 

deposition (droplet and gas-phase chemistry) of air pollutants in gas and aerosol phases. Thisis the 

core of the modelling system 

The main output consists of the estimation of pollutant concentrations (i.e., PM10, NO2 and O3). 

Moreover, these can be corrected based on the observed air quality data provided by the regional 

monitoring network (i.e., SCM, Successive Correction Method, see the paragraph 2.2.3).. These 

techniques have been applied on hourly simulated concentrations by the modelling system, not on the 

yearly value, as in other cases. The modelling system with the support of AriaNETsrl has been applied 

over the following two domains, as shown in Figure 8: 

• a background domain (g2, blue line), covering Po valley basin and the Alps and Slovenia, with an 

horizontal resolution of 4 km; 

• a regional target domain (g3, red line), covering the whole Lombardia Region with an horizontal 

resolution of 1 km.  

 

 

 



 

 

 

Domain 

Vertical Resolution

Horizontal resolution

CTM model 

BC 

Meteo model 

Emission data 

Output 

Table 4-  Main configurations of FARM

Figure 
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g2 g3 

Lon: 254506-1112902 

Lat: 4808039-5235127 

Lon: 452013

Lat:4935490-

Vertical Resolution 16 level up to 4960 a.g.l 16 level up to 4960 a.g.l

Horizontal resolution 4km x 4km 1km x 1km

FARM FARM

QualeAria: 

http://www.qualearia.it 

QualeAria: 

http://www.qualearia.it

WRF WRF

Prepair, INEMAR, 

EMEP, ISPRA 

Prepair, INEMAR, 

EMEP 

+96 hours forecast, air 

quality indicators, air 

quality maps 

+96 hours forecast, air 

quality indicators, air 

quality maps, air quality 

index

Main configurations of FARM-LO/ARPA-LO modelling system. 

8.-  PREPAIR domain of ARPA-LO modelling system 

Lon: 452013-699319 

-5170980 

16 level up to 4960 a.g.l 

1km x 1km 

FARM 

QualeAria: 

http://www.qualearia.it 

WRF 

Prepair, INEMAR, 

+96 hours forecast, air 

indicators, air 

quality maps, air quality 

index 

 

 



 

 

Figure 

2.1.1.6 ARSO Model (CAMx-SLO)

ALADIN/SI-CAMx modelling system consists of chemical transport CAMx model (Comprehensive 

Air Quality Model with Extensions) coupled offline in 1 hour interval with the operational 

meteorological ALADIN/SI model. 

ALADIN/SI model is hydrostatic model, in which the hydrostatic approximation replaces the vertical 

momentum equation (http://www.umr

Environmental Agency, ALADIN/SI

• Model with the Central Europe domain (Figure 10). Horizontal resolution: 4.4 km, 421 x 421 model 

points. 

• Vertical resolution: 87 levels (first model level 10 meters above the surface, 19 levels below the 

pressure surface of 900 hPa, 23 levels below the pressure surface of 850 hPa). 

• Meteorological fields for the CAMx

water, rainwater, snow water, falling ice crystal volume, optical cloud thickness, vertical turbulent 

diffusivity coefficient and the surface temperature field. 

CAMx is an Eulerian model, able 

deposition (dry and wet) of air pollutants (ENVIRON). 

• Model domain is smaller than the ALADIN/SI domain, but still large enough to cover the entire Po 

Valley region, Slovenia and the surrounding countries (Figure 10);

• Horizontal resolution: 4.4 km, 270 x 210 model points;
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9.-  The architecture of ARPA-LO modelling system. 

SLO) 

CAMx modelling system consists of chemical transport CAMx model (Comprehensive 

Air Quality Model with Extensions) coupled offline in 1 hour interval with the operational 

eorological ALADIN/SI model.  

ALADIN/SI model is hydrostatic model, in which the hydrostatic approximation replaces the vertical 

momentum equation (http://www.umr-cnrm.fr/aladin/). Setup of the model is as follows (Slovenian 

Environmental Agency, ALADIN/SI Model Products, http://meteo.arso.gov.si/):

Model with the Central Europe domain (Figure 10). Horizontal resolution: 4.4 km, 421 x 421 model 

Vertical resolution: 87 levels (first model level 10 meters above the surface, 19 levels below the 

e surface of 900 hPa, 23 levels below the pressure surface of 850 hPa). 

Meteorological fields for the CAMx input: pressure, temperature, wind, specific humidity, cloud 

water, rainwater, snow water, falling ice crystal volume, optical cloud thickness, vertical turbulent 

diffusivity coefficient and the surface temperature field.  

CAMx is an Eulerian model, able to simulate transport, dispersion, chemical transformations and 

deposition (dry and wet) of air pollutants (ENVIRON). The model setup of isas follows:

Model domain is smaller than the ALADIN/SI domain, but still large enough to cover the entire Po 

egion, Slovenia and the surrounding countries (Figure 10); 

Horizontal resolution: 4.4 km, 270 x 210 model points; 

 

CAMx modelling system consists of chemical transport CAMx model (Comprehensive 

Air Quality Model with Extensions) coupled offline in 1 hour interval with the operational 

ALADIN/SI model is hydrostatic model, in which the hydrostatic approximation replaces the vertical 

cnrm.fr/aladin/). Setup of the model is as follows (Slovenian 

Model Products, http://meteo.arso.gov.si/): 

Model with the Central Europe domain (Figure 10). Horizontal resolution: 4.4 km, 421 x 421 model 

Vertical resolution: 87 levels (first model level 10 meters above the surface, 19 levels below the 

e surface of 900 hPa, 23 levels below the pressure surface of 850 hPa).  

input: pressure, temperature, wind, specific humidity, cloud 

water, rainwater, snow water, falling ice crystal volume, optical cloud thickness, vertical turbulent 

to simulate transport, dispersion, chemical transformations and 

The model setup of isas follows: 

Model domain is smaller than the ALADIN/SI domain, but still large enough to cover the entire Po 



 

 

• Vertical resolution: lower 68 levels of the ALADIN/SI's 87 levels;

• Chemical initial conditions: from previous run;

• Chemical boundary conditions: Global model system IFS

Range Weather Forecasts, ECMWF). MACC reanalysis, 

reanalysis/); 

• Differentanthropogenicemission databases:

• Emissions over Slovenia: National inventory for year 2013 (resolution: 100 m)

• Emission over Po Valley (i.e. PREPAIR area): PREPAIR emission data base for year 2016 

• Emissions outside Slovenia and PREPAIR area: European TNO

• Chemical mechanism used: SAPRC07TC ("Toxics" version of SAPRC07, with additional model 

species to explicitly represent selected toxics species, https://intra.engr.ucr.edu/~carter/SAPRC/)

Among above listed input data, some additional input data

These include geographical variables: land use (CORINE database, https://land.copernicus.eu/pan

european/corine-land-cover), Leaf area index (from ALADIN/SI model), and total amount of ozone in 

the atmosphere (i.e. amount of ozone in each column of air, measured with a spectrometer, TOMS 

Total Ozone Monitoring Spectrometer, 

spectrometer-earth-probe). 

Figure 10 - Model domain of ALADIN/SI and CAMx model
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Vertical resolution: lower 68 levels of the ALADIN/SI's 87 levels; 

Chemical initial conditions: from previous run; 

s: Global model system IFS-TM5 (The European centre for Medium

Range Weather Forecasts, ECMWF). MACC reanalysis, http://pps.ecmwf.int/datasets/data/macc

emission databases: 

Emissions over Slovenia: National inventory for year 2013 (resolution: 100 m)

Emission over Po Valley (i.e. PREPAIR area): PREPAIR emission data base for year 2016 

Emissions outside Slovenia and PREPAIR area: European TNO-MACC-III for 

Chemical mechanism used: SAPRC07TC ("Toxics" version of SAPRC07, with additional model 

species to explicitly represent selected toxics species, https://intra.engr.ucr.edu/~carter/SAPRC/)

Among above listed input data, some additional input data is also required by the CAMx. 

These include geographical variables: land use (CORINE database, https://land.copernicus.eu/pan

cover), Leaf area index (from ALADIN/SI model), and total amount of ozone in 

ozone in each column of air, measured with a spectrometer, TOMS 

Total Ozone Monitoring Spectrometer, https://eospso.nasa.gov/missions/total

 

Model domain of ALADIN/SI and CAMx model. Figure 11– Input data for CAMx model.

TM5 (The European centre for Medium-

http://pps.ecmwf.int/datasets/data/macc-

Emissions over Slovenia: National inventory for year 2013 (resolution: 100 m) 

Emission over Po Valley (i.e. PREPAIR area): PREPAIR emission data base for year 2016  

III for year 2011.  

Chemical mechanism used: SAPRC07TC ("Toxics" version of SAPRC07, with additional model 

species to explicitly represent selected toxics species, https://intra.engr.ucr.edu/~carter/SAPRC/) 

is also required by the CAMx.  

These include geographical variables: land use (CORINE database, https://land.copernicus.eu/pan-

cover), Leaf area index (from ALADIN/SI model), and total amount of ozone in 

ozone in each column of air, measured with a spectrometer, TOMS - 

https://eospso.nasa.gov/missions/total-ozone-mapping-

 

Input data for CAMx model. 
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2.2 DATA FUSION TECHNIQUES 
2.2.1 NINFA and Observations Data Fusion 

The pollutant concentration output by the CTM NINFA can well represent the spatial distribution of 

pollutants while, on the other hand, in situ measurements are more quantitatively accurate. A data 

fusion post processing is then applied to CTM simulations in order to get the most benefit from both 

CTM spatial representativeness and observation precision.  

A geostatistical algorithm is used in Arpae to merge data from different sources. The pollutant 

background concentration can be regarded as a phenomenon measured by two variables, one more 

precise but known at only few locations (the observations) and one less accurate but known in the 

whole domain (the CTM on a regular grid), so Kriging with External Drift (KED) is a suitable 

technique to be applied to this dataset.  

The considered domain is characterized by a complex orography, so that the elevation above the sea 

level (h) is considered as a further spatial explanatory variable. A cross validation including or not 

including elevation was performed to verify the improvement introduced by the second explanatory 

variable. 

Let the statistical process we are estimating (either annual mean concentration or percentile) at X 

location be Y(X), in KED it is assumed that its expectation E[Y(X)] is equal to a combination of the 

two explanatory variables, CTM model (m) and elevation (h): 

E[Z(X)] =a + b∙m(X) + c∙h(X) 

(Wackernagel, 2003) 

With this assumption on the mean part of the process, the residuals are estimated. 

To fulfil the hypothesis of a gaussian process, before fitting the variogram, a Box-Cox transformation 

with fixed zero lambda parameter is done. Moreover, the covariance function is estimated assuming an 

exponential variogram. 

The KED algorithm has been implemented for the present work by means of the geoR R package 

(Ribeiro and Diggle, 2001; Diggle and Ribeiro, 2007). For the present assessment, the main indexes are 

evaluated with the described KED method: PM10 annual mean, PM10 90.41 percentile, PM2.5 annual 

mean, NO2 annual mean, O3 93.10 percentile. 
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The KED spatial prediction is performed at the NINFA model grid, i.e. at about 5 X 5 km
2 

resolution, 

on PREPSLO domain. 

To test the prediction skill of the used KED method, a cross validation has been carried out and the 

results are shown in section 2.3. 

2.2.2 FARM-PI and Observations Data Fusion 

In order to make pollutant model outputs more realistic and their spatial distribution more 

representative, FARM-PI concentration fields were fused with the observed data through kriging with 

external drift method (KED, Wackernagel 2003) by employing the geoR package in R (Development 

Core Team 2010; Ribeiro and Diggle, 2001). Specifically, the kriging was applied on the observations 

while the external drift was represented by the FARM-PI model output, since KED is a particular case 

of universal kriging, where the trend component is the CTM output (Ignaccolo et al, 2013; Ghigo et al 

2017). To make observed data approximately normally distributed with constant variance, a Box-Cox 

transformation (Box and Cox 1964) was applied separately per pollutant.  

Therefore, transformed observations were interpreted as realizations of a Gaussian spatial process Y (s) 

at spatial location s, in the domain S, that has the following structure:  

Y (s) = μ(s) + w(s) + ε(s), 

where:  

μ(s) = Xβ is the spatial trend component, β = {β0 ,β 1 , β 2 } is the unknown parameter vector, X = [1, 

FARM-PI(s), H GT (s)] is the deterministic variable including FARM-PI model output as well as 

orography (HGT): the addition of this variable as auxiliary covariate had the purpose to introduce 

information about the complex Po basin terrain. w(s) is a zero-mean stationary Gaussian random 

process with sill σ
2
 that takes into account the spatial correlation between observations by means of the 

spatial correlation function ρ(·) with range φ. Finally, ε(s) is the error term characterized by the 

variance τ
2
 (nugget). The leave-one-out cross-validation method was performed to choose the spatial 

covariance function and the best results were obtained with the exponential function, on all pollutants. 

To fit the model, firstly the parameters of the Box-Cox transformation and then the covariance 

parameters were estimated by the use of restricted maximum likelihood method.  

The KED procedure was applied to the concentration fields of PM10 annual mean, PM10 90.41 

percentile, PM2.5 annual mean, NO2 annual mean, O3 93.1 percentile produced by the FARM-PI 

modelling system on the g1 grid (see paragraph 2.1.3.2).  



 

 

The model output post-processing performs well. Moreover, we carried out a cross

in order to evaluate the KED performance and it showed that 

results of this analysis are reported shortly in paragraph 2.3

2.2.3 FARM-LO and Observations Data Fusion

ARPMEAS (ARchive Plus MEASurements) combine background 2/3D fields with observed data. 

Successive correction method (SCM) approach is implemented for the data fusion process. Briefly, 

production of gridded analysis is based on the Bratseth technique (Bratseth, 1986) that is a successive 

correction method (SCM, Brewster, 1996 and Daley, 1991) which includes background and 

observation error statistics. The analysis is initialized with a background field, or first guess, which is 

then modified by the analysis of local data onto the model grid. The analysis values at observation 

locations are first obtained using a bilinear in

performed at the model grid points:

The grid point values are determined using a weighted sum of ‘observation increments’, which are the 

differences between the observation values sj0 and the anal

1). On the initial pass over the grid, is provided by the background field. The true analysis is performed 

at the observation locations, which allows additional interpolation to be avoided:

Here si(n) is the analysis value at the observation location i. On the initial iteration, s

background value interpolated to the observation location. The weights are normalized by the 

observation density around each analysis point:

where αxj and αij are the weights used respectively at the grid point and at the observation locations 

analysis and δij is the Kronecker delta which is zero unless i=j. The correlation coefficients 

assumed to be Gaussian functions, allowing the weights to asymptote to zero wit

observation distance from the analysis point.
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processing performs well. Moreover, we carried out a cross

in order to evaluate the KED performance and it showed that kriging results are satisfactory. The 

results of this analysis are reported shortly in paragraph 2.3 

LO and Observations Data Fusion 
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CM) approach is implemented for the data fusion process. Briefly, 
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then modified by the analysis of local data onto the model grid. The analysis values at observation 

locations are first obtained using a bilinear interpolation. The analysis of a model variable, s, is then 

ints: 

The grid point values are determined using a weighted sum of ‘observation increments’, which are the 

differences between the observation values sj0 and the analysis values at the observation locations s
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analysis value at the observation location i. On the initial iteration, si(n-1) is the 

background value interpolated to the observation location. The weights are normalized by the 

weights used respectively at the grid point and at the observation locations 

is the Kronecker delta which is zero unless i=j. The correlation coefficients ρare 

assumed to be Gaussian functions, allowing the weights to asymptote to zero with increasing 



 

 

Here rij is the horizontal distance between observations i and j, 

are the horizontal and vertical scaling distances. The quantity mj represents the local d

around the analysis point, and includes the error statistics:

When combining measurements and model results, it is important to take into account the so

lack of representativeness errors, which can be defined as “the typical deviances 

occur between model calculated and observed concentrations, if their spatial and/or temporal positions, 

or averaging characteristics, do not match” (Zhan et al., 2006). Observational error variances derive 

from two different sources: instrumental and those associated with local phenomena (e.g. emissions, 

local flows and turbulence) at spatial scales not resolved by the underlying model. The second error is 

denoted “error of representativeness”. The observational error 

representativeness errors. According to Elbern et al. (2007) the representativeness error can be 

expressed by the following formula:

where Δx is the grid resolution of background field, Lrepr

(e.g. the radius of influence associated with different types of ground based stations), and 

tuning parameter called “characteristic absolute error”. Pagowski et al. (2010) found experimentally 

that εabs=1/2εinstr and suggest the following values for L

suburban and urban stations. Using the above formula and definition, we obtain the following 

expression for ε
2
:  

The value n=4 is a consistent with the con

and provide a representativeness error that is always greater or equal to the instrument error. 

Consequently, the spatial features of assimilated fields will depend on the values assumed by th

characteristic lengths associated with each monitoring station

These techniques have been applied in the PREPAIR simulation on hourly concentrations simulated by 

the modelling system, not on the yearly value, as in other cases. 
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Here rij is the horizontal distance between observations i and j, Δzij is the vertical distance, R and R

are the horizontal and vertical scaling distances. The quantity mj represents the local d

around the analysis point, and includes the error statistics: 

 

When combining measurements and model results, it is important to take into account the so

lack of representativeness errors, which can be defined as “the typical deviances 

occur between model calculated and observed concentrations, if their spatial and/or temporal positions, 

or averaging characteristics, do not match” (Zhan et al., 2006). Observational error variances derive 

strumental and those associated with local phenomena (e.g. emissions, 

local flows and turbulence) at spatial scales not resolved by the underlying model. The second error is 

denoted “error of representativeness”. The observational error εo is the sum of th

representativeness errors. According to Elbern et al. (2007) the representativeness error can be 

expressed by the following formula: 

 

x is the grid resolution of background field, Lrepr the characteristic length of the observations 

(e.g. the radius of influence associated with different types of ground based stations), and 

tuning parameter called “characteristic absolute error”. Pagowski et al. (2010) found experimentally 

and suggest the following values for Lrepr : 10, 4 and 2 km respectively for rural, 

suburban and urban stations. Using the above formula and definition, we obtain the following 

The value n=4 is a consistent with the concept of effective model resolution (e.g. 4

and provide a representativeness error that is always greater or equal to the instrument error. 

Consequently, the spatial features of assimilated fields will depend on the values assumed by th

characteristic lengths associated with each monitoring station.  

These techniques have been applied in the PREPAIR simulation on hourly concentrations simulated by 

the modelling system, not on the yearly value, as in other cases.  

zij is the vertical distance, R and Rz 

are the horizontal and vertical scaling distances. The quantity mj represents the local data density 

When combining measurements and model results, it is important to take into account the so-called 

lack of representativeness errors, which can be defined as “the typical deviances or differences that 

occur between model calculated and observed concentrations, if their spatial and/or temporal positions, 

or averaging characteristics, do not match” (Zhan et al., 2006). Observational error variances derive 

strumental and those associated with local phenomena (e.g. emissions, 

local flows and turbulence) at spatial scales not resolved by the underlying model. The second error is 

o is the sum of the instrument and the 

representativeness errors. According to Elbern et al. (2007) the representativeness error can be 

the characteristic length of the observations 

(e.g. the radius of influence associated with different types of ground based stations), and εabs is a 

tuning parameter called “characteristic absolute error”. Pagowski et al. (2010) found experimentally 

: 10, 4 and 2 km respectively for rural, 

suburban and urban stations. Using the above formula and definition, we obtain the following 

 

cept of effective model resolution (e.g. 4Δ�, see Pielke 2013) 

and provide a representativeness error that is always greater or equal to the instrument error. 

Consequently, the spatial features of assimilated fields will depend on the values assumed by the 

These techniques have been applied in the PREPAIR simulation on hourly concentrations simulated by 
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2.2.4 CAMx-SLO and Observations Data Fusion 

Data fusion is considered one of the techniques of data assimilation (Lahoz et al. 2014), where we 

combine the results of numerical models and the point measurements (Schneider et al, 2015). There are 

known various statistical and geostatistical approaches to the data fusion (Berrocal et al, 2012). In our 

case the used statistical method for data fusion was geostatistical approach of kriging with external drift 

(Cressie, 1993)). 

Kriging with external drift is a geostatistical algorithm where the value of a variable (interpolated 

value) at any grid point is calculated as a linear combination of measurements of the surrounding 

measuring points. The coefficients of this linear combination are calculated under assumption, that the 

mean square of the differences between the measured and interpolated values at the measurement 

points (kriging variance) are the smallest. In addition to this assumption (smallest mean square error), 

when calculating the coefficients of a linear combination, we also take into account the outcome of the 

spatial relationship of the variable, which is described by the variogram function (Cressie, 1993). The 

average of the considered variable may also depend on other explanatory variables, such as the altitude. 

In such case, we express the average as a linear combination of explanatory variables and look for a 

spatial correlation only for the residues of this function. 

In our case, we performed Kriging with external drift in two stages. In the first stage, we interpolated 

the results of model concentration fields with a resolution of 4.4 km to the model grid with a resolution 

of 1 km, taking into account the altitude field and the field of geographical coordinates (latitude and 

longitude) with 1 km resolution as external variables. In the second stage, we interpolated the 

measurement points to a model grid with 1 km resolution, taking into account the interpolated field of 

model values (i.e. the result from the first step) and the field of geographical coordinates (latitude and 

longitude) at 1 km resolution. 
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2.3 DATA FUSION VALIDATION 
2.3.1 Cross validation 

For two data fusion datasets, FARM-PI and NINFA, a kriging methodology cross validation has been 

carried out. The one-leave-out methodology has been applied to verify the spatial prediction 

performance. The results are presented both in qualitative terms, by means of scatter plots, and in 

quantitative terms by means of performance indexes. 

The scatter plots of observed/simulated data for each air quality index are shown: PM10 annual mean, 

PM10 90.41 percentile, PM2.5 annual mean, NO2 annual mean, O3 93.1 percentile. 

In the following plots the lines defining the admitted model percentage discrepancy (in terms of 

percentage relative uncertainty) and the EU limit value are depicted for each pollutant index. 
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Figure 12.- PM10 annual mean: cross validation scatter plot for FARM-PI (top) and NINFA (bottom). The dotted lines represent the 

admitted relative uncertainty (50% for PM10 annual mean), while the red lines indicate the EU limit value (40 μg/m3). 

 

 

Figure 13.- PM10 percentile 90.41: cross validation scatter plot for FARM-PI (top) and NINFA (bottom). The dotted lines represent the 

50% relative uncertainty, while the red lines indicate the EU limit value (50 μg/m3). 
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Figure 14 - PM2.5 annual mean: cross validation scatter plot for FARM-PI (top) and NINFA (bottom). The dotted lines represent the 

admitted relative uncertainty (50% for PM2.5 annual mean), while the red lines indicate the EU limit value (25 μg/m3). 
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Figure 15 -. NO2 annual mean: cross validation scatter plot for FARM-PI (top) and NINFA (bottom). The dotted lines represent the 

admitted relative uncertainty (30% for NO2 annual mean), while the red lines indicate the EU limit value (40 μg/m3). 
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Figure 16 - O3 percentile 93.1: cross validation scatter plot for FARM-PI (top) and NINFA (bottom). The dotted lines represent the 

admitted relative uncertainty (50% for O3 93.1 percentile), while the red lines indicate the EU target value (120 μg/m3). 

Overall, it can be observed a very good agreement between observed and simulated data for both data 

fusion simulations, in particular for PM10, PM2.5 and ozone.  

The bulk of PM10 predictions, either annual mean or 90.41 percentile, lie within the tolerance area; 

only in very few stations the simulated data exceeds observation beyond the admitted model 

discrepancy.  



 

 26

All PM2.5 annual mean simulations are within the tolerance, so it is for the O3 93.1 percentile, for both 

models. 

For the NO2 annual mean the results are good, but the scatter plot shows, for both simulations, some 

points not included in the tolerance area, with local overestimation or underestimation. This behaviour 

is probably due to high spatial variability of NO2 concentrations and the fact that some stations have 

local peculiarities which cannot be reproduced at model resolution (about 5 km for NINFA and 8 km 

for FARM-PI).  

In the following table the main performance statistical scores are summarized for NINFA and FARM-

PI cross-validation dataset: we considered three typical indexes based on the differences between fused 

and observed data that provided meaningful information: mean error (ME), unbiased root mean squared 

error (URMSE) and Pearson correlation (Yu et al, 2006; Denby et al, 2011). 

model index pollutant ME URMSE PEARSON 

      

NINFA annualMean PM10 -0,10 3,08 0,88 

FARM-PI annualMean PM10 0,08 2,88 0,90 

NINFA perc-90.4 PM10 -0,33 6,55 0,90 

FARM-PI perc-90.4 PM10 0,13 6,20 0,91 

NINFA annualMean PM25 -0,06 2,02 0,88 

FARM-PI annualMean PM25 0,01 2,23 0,86 

NINFA annualMean NO2 -0,12 3,73 0,81 

FARM-PI annualMean NO2 0,10 3,85 0,82 

NINFA perc-93.1 O3 -0,51 8,00 0,73 

FARM-PI perc-93.1 O3 -0,18 7,96 0,72 

Table 5 - Cross-validation results: statistical scores for NINFA and FARM-PI data fusion systems. 

The results reported in Table 5, showed very good performances for both kriging methodologies for 

almost all air quality indexes; nevertheless, there seems to be less accuracy in simulation of ozone 

levels, with general overestimation for both data fusion systems. 

For NO2, PM10 and PM2.5 NINFA shows a slight tendency to overestimate observed values (negative 

values of ME index), while FARM-PI to underestimate (positive values of ME index). 
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2.3.2 Comparison between observed and predicted values 

Cross-validation datasets are available only for FARM-PI and NINFA data fusion systems. Therefore, 

to evaluate and compare the performance of all four data fusion systems, a qualitative analysis between 

the observed data and the simulated data was carried out (Denby et al, 2011).  

The observed dataset was built considering all the stations available in the C1 dataset with data capture 

percentage not less than 75%; however the simulated dataset was built extracting, for each system, 

fused values at station coordinates by means of bilinear interpolation on grid values. 

The comparison results are presented in the following graphs in terms of scatter plot for all air quality 

indexes. All the adopted data fusion techniques provide good results: 

• for the PM10 and PM2.5 not only the background stations concentrations, but also the traffic 

station ones are well reproduced; 

• for annual mean of NO2 background stations are quite well reproduced by all systems, even if it 

should be noted a clear tendency to overestimate lower values for CAMx-SLO and a slight 

tendency to underestimate for FARM-LO and FARM-PI; the concentrations of traffic stations are 

generally underestimate by all systems, except CAMx-SLO. These results are consistent with the 

spatial resolution of four data fusion systems and confirms that NO2 levels at traffic station 

locations come from phenomena occurring at scales that cannot be solved with spatial resolution 

around 5 km. 
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Figure 17 -. Left: PM10 annual mean, simulated vs observed values for the four data fusion systems. Right: PM10 90.41 percentile, 

simulated vs observed values for the NINFA, FARM-PI, FARM-LO data fusion systems. . The dotted lines represent the admitted relative 

uncertainty, while the red lines indicate the EU limit value (40 and 50μg/m3 respectively) 

Figure 18 - Left: PM2.5 annual mean, simulated vs observed values for the four data fusion systems. Right: NO2 annual mean, simulated 

vs observed values for the four data fusion systems. The dotted lines represent the admitted relative uncertainty, while the red lines 

indicate the EU limit value (25 and 40 μg/m3 for PM2.5 and NO2 respectively) 

 

Figure 19 -. O3 93.10 percentile, simulated vs observed values for the NINFA, FARM-PI, FARM-LO data fusion systems. The dotted lines 

represent the admitted relative uncertainty, while the red lines indicate the EU target value (120 μg/m3 ). 
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3 ASSESSMENT RESULT 
3.1 PM10 
The spatial distributions of the annual mean and 90.41 percentile of PM10 produced by the four data 

fusion systems (Figure 20 and Figure 21 respectively) are very similar to each other, showing the same 

main patterns. The areas with the highest concentrations are located between the Lombardia and 

Veneto plains and around the metropolitan agglomerations. 

No model estimates annual average concentration beyond threshold value of 40 μg/m
3
, while all the 

models report PM10 concentrations above the EU daily limit value for the flat area of the Po Valley 

and around Ljubljana agglomeration (only FARM-LO in this case). 

Figure 22 shows boxplots of grid point distribution grouped by region for each data fusion system. The 

distributions are quite similar: NINFA and FARM-PI have very close median values, CAMx-SLO 

shows the higher median levels while FARM-LO the lowest. The largest differences between NINFA 

and FARM-PI, on one hand, and CAMx-SLO and FARM-LO on the other, occur in Slovenia and in the 

Alpine regions of Valle d'Aosta and Trentino. These small differences can be attributed to the fact that 

FARM-PI, NINFA and CAMx-SLO used very similar data fusion methodologies, but CAMx-SLO 

achieves a very fine resolution of the fused fields, while FARM-LO has implemented a conceptually 

different approach. 

 

Figure 20.- Maps of PM10 annual mean produced by the four data fusion systems. 
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Figure 21-. Maps of PM10 90.41 percentile produced by NINFA, FARM-PI and FARM-LO systems. 

  

Figure 22 - Boxplots of grid point concentration distributions grouped by model and region. Left: PM10 annual mean; right percentile 

90.4 of PM10 daily values. The red lines indicate the EU limit value (40 and 50μg/m3 respectively 
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3.2 PM2.5 
All models agree in estimating average annual values of PM2.5 above 20 μg/m3 in the flat area of 

Veneto and Lombardia, while CAMx-SLO and FARM-LO also show exceedances around Ljubljana 

(Figure 23 and Figure 24). The PM2.5 concentration is beyond the EU limit value for the annual mean 

only in some small areas in Lombardia, Veneto and Slovenia. 

The comparison between the spatial structure of the fields confirms what has already been highlighted 

for PM10. However, in Slovenia, the differences between the three models NINFA, FARM-LO and 

CAMx-SLO are not negligible (FARM-PI domain does not cover the whole Slovenian territory); this is 

due to lack of observed data of PM2.5 within the air quality dataset: one of the primary information is 

missing in the data fusion process, thus the differences between the CTMs are emphasized. 

 

Figure 23 - Maps of PM2.5 annual mean produced by the four data fusion systems. 
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Figure 24 - PM2.5, annual mean: boxplots of grid point concentration distributions grouped by model and region. The red lines indicate 

the EU limit value for stage I (25 μg/m3), while the orange one for stage II (20 μg/m3). 
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3.3 NO2 
Maps reported in Figure 25 show a quite similar spatial distribution of NO2 annual mean: all the 

models identify the main urban agglomerations as areas with the highest values. Only one model out of 

four (FARM-LO/ARPA-LO) estimates the annual mean of NO2 concentration above the EU limit value 

in a very small area in Milan and in Turin.  

Figure 25 confirms the considerations expressed in paragraphs 3.1 and 3.2 regarding the differences 

between the spatial distributions of the various data fusion systems. It is possible to highlight the 

location of the main highways, in particular from the results of the ARPA LO and CAMx-SLO 

modelling systems. 

 

Figure 25 - Maps of NO2 annual mean produced by the four data fusion systems. 
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Figure 26-  NO2 annual mean: boxplots of grid point concentration distributions grouped by model and region. The red lines 

indicate the EU limit value (40 μg/m
3
 ) 
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3.4 O3 
The maps in Figure 27 show the spatial distribution of O3 maximum daily 8-hour mean concentration 

values. All the models estimate concentration above the 120 μg/m
3
 threshold, implying an exceedance 

of the target value in almost the entire Po Valley. 

 

Figure 27 - Maps of O3 93.1 percentile produced by NINFA, FARM-PI, FARM-LO systems. 

 

Figure 28 - O3 93.1 percentile: boxplots of grid point concentration distributions grouped by model and region. The red lines indicate the 

EU target value (120 μg/m3 )  
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3.5 ATTAINMENT STATUS/POPULATION EXPOSURE 
The following Figure 29 and Figure 30 show the maps of the five air quality indicators produced by the 

four data fusion systems with a traffic light classification that highlights the attainment green areas and 

the nonattainment red areas. In summary, it can be state that: 

• there are no nonattainment areas for the annual mean of PM10 (Figure 29 left), as also confirmed 

by the monitoring data reported in Appendix A; 

• there are no nonattainment areas for the annual mean of NO2 (Figure 30, right); only one model 

predicts two very small nonattainment near Milan and near Turin; the monitoring data, as show in 

Appendix A, record exceedances only in traffic stations and in one background station; 

• for the percentile 90.41 of PM10 the nonattainment area extends across the whole flat area of the Po 

Valley and, only for one data fusion model, around Ljubljana agglomeration; the monitoring data in 

Appendix A show exceedances in Piemonte, Lombardia, Emilia-Romagna, Veneto and Friuli 

Venezia Giulia regions; 

• there are few nonattainment red areas located in Lombardia, Veneto and around Ljubljana 

agglomeration for PM2.5 annual mean regarding EU limit of 25 μg/m3; instead considering the 

limit of 20 μg/m3 the nonattainment area (yellow areas in Figure 30, left) extends across the large 

part of Lombardia and Veneto, significant part of Piemonte and minority part of Friuli Venezia 

Giulia and Emilia-Romagna; this scenario, except for Friuli Venezia Giulia, is described by 

monitoring data reported in Appendix A; 

• for the percentile 93.1 of O3 the nonattainment area extends across almost the whole Po Valley, as 

also confirmed by the monitoring data reported in Appendix A (Please note that the legal definition 

of the target value considers not only 1 year but the average over 3 years). 

  

Figure 29 - Attainment (green) and nonattainment (red) areas for PM10 annual mean (left) and PM10 percentile 90.41 (right). 
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Figure 30 - Attainment (green) and nonattainment (red) areas for PM2.5 annual mean (left) and NO2 annual mean (right). In the PM2.5 

maps yellow areas indicate attainment regarding the EU limit of 25 μg/m3 and nonattainment for EU limit of 20 μg/m3. 

Annual values of the five air quality indexes considered in this report, as estimated by the four 

considered chemistry-transport models, are compared with the population data on the same grids, i.e. 

on the grid of each model, in order to assess the population exposure. Population data have been 

provided by the Italian Statistical Institute ISTAT for the Italian regions, on the census units, referring 

to 2011, and for Slovenia by the Statistical Office of the Republic of Slovenia SURS, on a regular grid 

of 100m resolution, referring to 2019. Population data have been split (in the Italian regions only, given 

the irregularity of the census units) and reaggregated (both in Italy and in Slovenia), proportionally to 

the surface, in order to estimate the population residing in each cell of each model. 

Finally, for each air quality index, each model and each considered region, the population exposed to 

different index values was estimated, assuming that each inhabitant is exposed to the concentration that 

was estimated in the cell in which it resides. In particular, the population exposed to values exceeding 

the thresholds established by EU legislation has been estimated. 

There are some differences in the estimates of the various models, in particular for NO2 (for which the 

most marked spatial gradients correspond to the most densely populated areas) and for Slovenia (for 

which different monitoring stations have been included in the datasets for the data fusion).  

According to all models, in year 2020 no citizens were exposed to values beyond the threshold for the 

PM10 annual average. 

Only one model out of four estimates that there were inhabitants exposed to values above the threshold 

for the NO2 annual average (about 650,000 in Lombardia and Piemonte together). The other three 

models remain under the limits across their domain. 

The models agree in estimating that a large part of the population of Lombardia and Veneto and a 

significant part of the population of Piemonte was exposed to average PM2.5 annual values above 20 
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μg/m
3
. Only a minority part of the population of Friuli Venezia Giulia and Emilia-Romagna, and no 

inhabitants of Valle d'Aosta and Trentino Alto Adige are exposed for this index, while for Slovenia 

there is little agreement between the three models that cover that area. 

About eight million from Lombardia, four million from Veneto, three million from Piemonte, two 

million from Emilia-Romagna, 200,000 from Friuli Venezia Giulia and - according to one of the 

models - even 400,000 Slovenians were exposed to more than 35 daily PM10 exceedances in 2020. 

Almost ten million Lombards, about four and a half million from Veneto, three and a half million from 

Piemonte, almost four million from Emilia-Romagna, about half a million from Friuli Venezia Giulia, 

half a million from Trentino Alto Adige and over one hundred thousand Slovenes and even some 

thousands of inhabitants of the Valle d’Aosta were exposed to more than 25 daily ozone exceedances in 

2020. 
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Figure 31 - Population exposure estimate for NO2 annual mean. 
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Figure 32 - Populationexposure estimate for percentile 90.41 of PM10. 
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Figure 33 - Population exposure estimate for PM2.5 annual mean. 
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Figure 34.-  Population exposure estimate for PM10 annual mean. 
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Figure 35 - Populationexposure estimate for ozone percentile 93.1 
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4 DISCUSSION 
This first report provides a synthetic view on the state of air quality in Po Valley and Slovenia for year 

2020 and examines PM10, PM2.5, nitrogen dioxide and ozone, which are the pollutants whose values 

more frequently exceed legislation thresholds. 

The assessment was carried out with a state-of-art approach that uses data fusion techniques to 

integrate information coming from air quality monitoring networks and CTM modelling systems. 

Among all the CTM running operational within the PREPAIR project, four modelling and data fusion 

systems have been used for the 2020 assessment.  

No data fusion system estimates PM10 annual average concentrations beyond the threshold value of 40 

μg/m
3
, while all the models report PM10 concentrations above the EU daily limit value for the flat area 

of the Po Valley, thereby a large percentage of the population is exposed to values beyond the daily 

limit value. 

Only a small percentage of populations in some few areas in Lombardia, Veneto and Slovenia is 

exposed to values beyond the stage I limit for the annual average of PM2.5 (25 μg/m
3
), while a large 

percentage, especially in Veneto and Lombardia is exposed to average annual values of PM2.5 above 

the stage II limit (20 μg/m
3
). 

All the data fusion systems identify the main urban agglomerations as areas with the highest values of 

NO2 concentrations. Only one model out of four estimates the annual mean average of NO2 

concentration above the EU limit value in a very small area around Milan and Torino. 

All the data fusion systems show ozone concentration above the 120 μg/m
3
 threshold, implying an 

exceedance of the target value in almost the entire Po Valley and more than 24 million of inhabitants 

exposed to value beyond EU limit. 

However, it should be pointed out that 2020 was a particular year for air quality: the health crisis 

caused by COVID-19 pandemic and the consequent containment measures adopted have had a 

considerable impact on air quality. The results of the analyzes on the lockdown period provided an 

opportunity to verify the validity of these assessments and compare them with the data on the reduction 

of emissions and concentrations in an unprecedented condition of generalized contraction of human 

activities. 

 The assessments of the emission variations relating to the lockdown period can in fact be compared 

with the target reductions of the plans. 
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This comparison indicates that:  

• NOX emissions had a decrease comparable to that envisaged by the plans, with a weekly maximum 

of the order of 40% (variations from week to week and trends are similar in the various regions). 

This decrease is mainly attributable to the reduction in vehicle traffic which reached 80% for light 

vehicles and 50 - 60% for heavy commercial vehicles. 

• PM10 (primary) emissions had a maximum weekly decrease of the order of 20%, significantly 

lower than that envisaged by the plans (-40%), with variations from week to week and trends 

diversified in the various regions. The smaller decrease in PM10 emissions is mainly attributable to 

space heating; the differences between the regions are mainly due to the different consumption of 

woody biomass.  

• Starting from the first week of May, at the beginning of phase 2 (DPCM April 26, 2020) there is a 

reversal trend for both pollutants and emissions progressively increase as activities resume.  

• Ammonia emissions are not reduced, as agricultural / livestock activities, which emit more than 

90% of ammonia, did not change during the lockdown. Small variations (approximately -1%) are 

due to the reduction in circulating vehicles (catalytic converters). Small variations (approximately -

1%) are due to the reduction in circulating vehicles (catalytic converters). 

In line with the framework of emissions, gaseous concentrations (NO2, NO, benzene) in March-May 

2020 there have been very significant decreases compared to the average period 2016-2019. PM10 

mass, however, shows a less reduction. with concentration values within the variability of previous 

years (2016-2019), highlighting a decoupling with gaseous pollutants. These data once again highlight 

the complex dynamics of PM and of the relationships between emissions of precursors and transport, 

diffusion and physico-chemical processes that determine the formation of the secondary PM, which 

constitutes a significant part (of the order of 70%) of PM10 in the Po basin. This dynamic,  even with 

reduced emissions, is strongly influenced by weather conditions and can lead to episodes of exceeding 

of the limit values, although of much lower intensity compared to that which would occur in the usual 

emission conditions.  

Two different chemical models  (NINFA and FARM-PI) of transport and dispersion were used which 

allow to estimate the percentage reductions of the real scenario compared to a hypothetical scenario in 

which the emissions did not change ("NO-LOCKDOWN" scenario). The results of the two models are 

consistent with each other and indicate that for nitrogen dioxide (NO2 NO2) the reductions at the end 

of March reach median values on the Po Valley of about 35-50%, while for PM10 the reductions are 
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smaller, more differentiated by geographical area, more variable in the various weeks, but still reach a 

median reduction of 15- 30%. In other words, in the absence of the lockdown, in the same weather 

conditions, the NO2 concentration was about twice and the concentration of PM would have been 

higher by about 1/3.  

The main hypotheses to explain the causes of the relatively less effective reduction of PM compared to 

NO2 are:  

• the primary PM10 emissions have not been reduced sufficiently, in particular due to heating 

emissions; 

• some precursors (mainly NH3) did not decrease. The mixture of precursor gases could have 

remained such as to maintain a high secondary production potential even in the presence of varied 

proportions (less NOX, constant NH3); 

• the high insulation in March increased the production of secondary PM of photochemical origin.  

These results seem to confirm the correctness of the strategy of the air quality plans adopted by the 

Regions and Autonomous Provinces of the Po Basin, as well as the interregional agreements, focused 

on multi-sectorial and multi-polluting large-scale interventions. 

A more  in-depth analysis of these effects can be found in the previous three reports “Covid-19 and air 

quality in the Po Valley'' published within the PREPAIR project.  

It should be noted that the purpose of this report is informative, it does not replace the annual air 

quality assessment and reports required by EU directives and decisions (2008/50/EU and 

2011/850/EU).  

Finally it must be underlined that although the four CTM systems used have different setup (resolution, 

boundary condition, meteorological data and data fusion technique), the outputs are very similar to 

each other showing the reliability of the assessment contained in the report. 
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5 GLOSSARY 

ALADIN a numerical weather prediction system (Aire Limitée Adaptation 

dynamique Développement Inter National) 

APPA/ARPA/Arpae Environment protection Agency of one of the Italian regions or 

 autonomous provinces 

AQF Air Quality Forecast 

ARSO Slovenian environment agency 

CAMS Copernicus Atmosphere Monitoring Service 

CAMx Comprehensive Air Quality Model with Extensions 

COSMO Consortium for Small-scale Modelling 

CTM chemistry-transport model 

ECMWF European Centre for Medium-Range Weather Forecasts 

EMEP European Monitoring and Evaluation Programme 

FARM Flexible Air quality Regional Model 

IC/BC initial conditions/boundary conditions 

INEMAR INventario EMissioni ARia 

ISPRA Italian Institute for Environmental Protection and Research 

(Istituto Superiore per la Protezione e la Ricerca Ambientale) 

KED kriging with externaldrift 

NINFA Northern Italy Network to Forecast Aerosol pollution 

NWP numerical weather prediction 

PREPAIR Po Regions engaged to Policies of Air  

SAPR chemical mechanism, part of the chemistry-transport models 

 (originally developed by the Statewide Air Pollution Research Center) 
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SNAP emitting sources classification (originally defined in the 

 framework of the “Significant New Alternatives Policy” program of US-EPA) 

SNPA the Italian national system for environmental protection (Sistema 

nazionale per la protezione dell’ambiente) 

WRF Weather Research and Forecasting model 
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APPENDIX A: Air Quality Data

Figure A 1 - PM10 annual mean: maps of observed data, monitoring stations are grouped by station classification

Figure A 2 - PM10 annual mean: boxplots of observed data grouped by station type and region.
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APPENDIX A: Air Quality Data 

PM10 annual mean: maps of observed data, monitoring stations are grouped by station classification

PM10 annual mean: boxplots of observed data grouped by station type and region.

 

PM10 annual mean: maps of observed data, monitoring stations are grouped by station classification 

 

PM10 annual mean: boxplots of observed data grouped by station type and region. 



 

 

Figure A 3 - PM10 percentile 90.41: maps of observed data, monitoring stations are grouped by station classification

Figure A 4.- PM10 percentile 90.41:boxplots of observed data grouped by station type and region.
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PM10 percentile 90.41: maps of observed data, monitoring stations are grouped by station classification

PM10 percentile 90.41:boxplots of observed data grouped by station type and region.

 

PM10 percentile 90.41: maps of observed data, monitoring stations are grouped by station classification 

 

PM10 percentile 90.41:boxplots of observed data grouped by station type and region. 



 

 

Figure A 5.- PM2.5 annual mean: maps of observed data, monitoring stations are grouped by station classification

Figure A 6 -- PM2.5 annual mean:boxplots of observed data grouped by station type and region.

54

PM2.5 annual mean: maps of observed data, monitoring stations are grouped by station classification

PM2.5 annual mean:boxplots of observed data grouped by station type and region.

 

PM2.5 annual mean: maps of observed data, monitoring stations are grouped by station classification 

 

PM2.5 annual mean:boxplots of observed data grouped by station type and region. 



 

 

Figure A 7-. NO2 annual mean: maps of observed data, monitoring stations are grouped by station classification

Figure A 8-. NO2 annual mean:boxplots of observed data grouped by station type and region
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. NO2 annual mean: maps of observed data, monitoring stations are grouped by station classification

. NO2 annual mean:boxplots of observed data grouped by station type and region

 

. NO2 annual mean: maps of observed data, monitoring stations are grouped by station classification 

 

. NO2 annual mean:boxplots of observed data grouped by station type and region. 



 

 

Figure A 9. O3 percentile 90.3: maps of observed data, monitoring stations are grouped by station classification

Figure A 10 – O3 percentile 93.1 of 8
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. O3 percentile 90.3: maps of observed data, monitoring stations are grouped by station classification

O3 percentile 93.1 of 8-hour running average daily maximum distribution

 

. O3 percentile 90.3: maps of observed data, monitoring stations are grouped by station classification 

 

running average daily maximum distribution 



 

 

THE PROJECT PREPAIR 

The Po Basin represents a critical area for the quality of air, as the limit values of fine powders, 

nitrogen oxides and ozone set by the European Union are often exceeded. The northern Italian 

regions re included in this area as well as the metropolitan cities of Milan, Bologna and Turin. 

This area is densely populated and highly industrialized. Tons of nitrogen oxides, powders and 

ammonia are emitted annually into the atmosphere from a wide variety of polluting sources, 

mainly related to traffic, domestic heating, industry, energy production and agriculture. 

Ammonia, mainly emitted by agricultural and zootechnical activities, contributes substantially 

to the formation of secondary powders, which constitute a very significant fraction of total 

powders in the atmosphere. 

Because of the weather conditions and the morphological characteristics of the basin, which 

prevent the mixing of the atmosphere, the background concentrations of the particulate, in the 

winter period, are often high. 

In order to improve the quality of the air in the Po Valley, since 2005 Regions have signed 

Program Agreements identifying coordinated and homogeneous actions to limit emissions 

deriving from the most emissive activities. 

The PREPAIR project aims at implementing the measures foreseen by the regional plans and by 

the 2013 Po Basin Agreement on a wider scale, strengthening the sustainability and durability 

of the results: in fact, the project involves not only the regions of the Po valley and its main 

cities, but also Slovenia, for its territorial contiguity along the northern Adriatic basin and for 

its similar characteristics at an emissive and meteoclimatic level. 

The project actions concern the most emissive sectors: agriculture, combustion of biomass for 

domestic use, transport of goods and people, energy consumption and the development of 

common tools for monitoring the emissions and for the assessment of air quality over the whole 

project area. 

DURATION 

From February 1
st
, 2017 to January 31, 2024. 



 

 

TOTAL BUDGET  

17 million euros available to invest in 7 years: 10 million of which coming from the European 

Life Program.   

COMPLEMENTARY FUNDS 

PREPAIR is an integrated project: over 850 million euros coming from structural funds and 

from regional and national resources of all partners for complementary actions related to air 

quality.  

PARTNERS 

The project involves 17 partners and is coordinated by the Emilia-Romagna Region – General 

directorate for the territorial and environmental care.  



 

 

 


